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1. Introduotion

In the theory of radiative transfer there are several problem

which can be solved by finding the solution H(u) of the non-linear

integral equation

(1.1) 1 i -xf g(u)H(u)duVrX u+x

0

which is called Chandrasekhar's equation. The books by

Chandrasekhar (i] and Kourganoff (2] contain discussions of this

important equation; and these books also present the contributions

of various mathematicians who have shown that (1.1) can be solved

explicitly by using function theory techniques based on analytic

Scontinuation. Recently, (1961) C. Fox (3] has shown that (1.1) can

be converted into the linear equation

l~xfg(u)H(u)du(1.2) H(x)G(x) = I+x
0

( where 0(x) is known and g(x) is prescribed. The equation (1.2) in a

singular integral equation with a Cauchy kernel and it can be

solved for H(u) by using an extension of Carleman's method as shown

for example in Muskhelishvill's book (4].

Chandrasekhar's equation can be linearized by first writing

it in the form

(1.•3) xg(x) - Al(x) + (x)! 4llUldu+x
0

and then integrating each side of this equation after it has been

multiplied by the factor 1/(x+4). This gives



+ x +
(1.'l) - F ,1 41(u)duI 1 xd

0 L O ~ +0 X)dx

• -f J -x-~-~u du
0 0

I and after multiplying (1.4) by 41M and using (1.3) we find

i . (1 .5) • i • ° ( ) " •+ 4 x -d

0

Ii This is essentially the procedure that was used by Fox to pass from

(1.1) to (1.2). It suggests the possibility of solving

1. (16) 4(x)+l~x 1 41(u)du =f(x)

.. t 1.6 •(x) + 4, (x) f •:udu - x fl.x

0

which is both singular and non-linear. Equation (1.6), in turn,

L suggests an investigation of the more general equation

I X(C)++(C) f ! 2(Tmd fCC)
L

where C is an interior point of the simple smooth arc L which

connects the points ro and -1 in the complex T-plane.

One of the purposes of this paper is to show in Section 2

that the equation I can be solved explicitly by using elementary

function theory techniques. It turns out that the solution of I

is in some ways simpler than the solution of (1.3). We will also

be concerned with the solution of some other non-linear equations.

In Section 3 we show how to solve
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II~ ~ T24(l =T [f f4d] f(0

and Section 4 is devoted to the solution of

in~ ~ w202 C) + [f (!.TJ 2d (C

In Section 5 we show that there is a connection between equations

SI.II, III and certain problems in potential theory.

The equations I, II, III may be of interest for at least two

reasons. In the first place, they are of interest in themselves as

I j Cauchy singular, non-linear integral equations which can be solved

explicitly. In the second place, they present a formulation of

certain non-linear boundary value problems. Equation III, for

example, is intimately related to a problem in two-dimensional

potential theory which has a number of physical applications. This

is the problem of finding a potential function in a domain D when

its normal derivative is prescribed on one part of the boundary C;

and the magnitude of its gradient is given on the remaining part

of C. In Section 5 we show how an explicit formula for the solution

of this problem can be found.

The final Section 6 is concerned with a brief discussion of

the non-linear system

( ()f )dT-dT O
•(€ .- g (C)L

fL



and some other systems which can be linearized by the method

developed in Section 2.

We state here the main conditions and assumptions upon which

"our analysis is based. If T = i(t) is the equations of the simple

smooth arc L directed from To to 11 / -0 let L[T o,'r1] denote the

set of points T = T(t), to . t < tl; and let L(%o,T 1 ) denote the

set L[To,Tl] minus the endpoints To and TV We assume for

simplicity that the unknown function 4(t) satisfies a uniform

H81der condition for any pair of points in L('oTI) and thus

guarantee the existence of the Cauchy principal values of the

integrals which appear in I, II, III where C is in L(To,01T). We

also assume that if 4(r) has a singularity at an endpoint a of

L(ToTl] it is such that £ZT(-ta)4(t) = 0. We will say that a

function with these properties belongs to the class 410 If ý(T)

belongs to the class it can be shown that

L

satisfies a uniform H81der condition for any pair of points C1 and

C2 in L(o,T 1 ); and

F(z) -
L

as a function of the complex variable z is such that

SZ (z-)F(z) 0.

The properties of the prescribed function must match the

properties implied by the representations on the left-hand side of

I, II, IIi. That is, in accordance with our assumptions about

ii
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4(0), N(O) must satisfy a uniform H8lder condition on L(ToJT); and

although it may have a stronger singularity than 4(T) at a, f(C)

must be such that £ (Ca)2f(C) _ 0. We will say that under these

conditions f(C) belongs to the class V2.

The transformation 2T - (T1 -T0 )v +( 0o+TI) maps L[,oTl]

into L[-1,1] a simple smooth arc directed from T - -1 to T - 1.

If we also use 2C - (T 1 -0 )CO+ (0To+) we have

f kiL~p..f 4O(v)dv
o~,T11 1-1,i] -

Swhich shows that the transformation does not change the form of

equations I, II, III. Thus there is no loss of generality if we

assume, as we will hereafter, that L in I, II, III is L[-1,1].1
2. Equation I

We proceed to show how

(2.1) 4(c)+4(C)f,_ € - f(C)

L

can be solved by using the Hardy-Poincare-Bertrand formula. This

formula states that if *(T,C) is suitably restricted then

(2.2) f C f .m 2#(OO) +J'f j.dt
L L L L

provided c is in L(-l,I). This says that an interchange of the

order of integration on the left side of (2.2) leaves the residue

-_r 2 #(,w). If 4(T) belongs to the class defined in the
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Introduction, the formula (2,2) holds with *(T,C) - (-W- 2 )CW()(1).

The application of (2.2) to

= L LT

shows, after a little manipulation, that

(2,3)
L 

L[2 T] 2
7T42(CO) + [f~ f 2 - J()T[f (T-)d $(Trr

L +]-c L

Now if a solution of (2.1) exists when f(C) belongs to

then (2.1) and (2.3) inmly

(2,4~) ~ jj(D u Y~ f S(.~ . (0)
1-o L 1-Mo L

I + [I 4 (T?~d +[f T~dT]

or

(2.5) 2 f (1C f~ d 1 2 42( 0D) 2Wf 4erdT
1-M L L

2+ (kj 2 2A(k. +co
+ I (T)d¶](o2(l+ I)

where

L

kI -fT4(T)dk

L

I'
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I i the addition of

[ (2.6) ±t 2 (c)f + [2W Ai 4(c)+CO +)2ri *(TL d
1L

to (2.5) gives

(1- 2T (l•)f 0)dC 2± f1 r(c)

(2.7) -, f -Cd
L

[2
i (C-+f j(')d+ 2 (+ k -0 2o(k-1 zw)

Let us introduce the function

Fdes o W elta2)[f (ZT)d + 2

- [2xi + 2o)(k- +ozko) k +1-z ]

LL
¶This function is analytic for z not on L[-1,11 and it vanishes as

z -* -co * As z approaches the point to from the positive and negative

sides of L, the limit values of F (z) are

F~~ [±) (l wi2 l co2)(w) + 2f 2(rf

- 2X(k 1 +ca*c0) -k 2 +(1_02)X2,



but, as we can see from (2.7), these limit values vanish. Further-

more, it follows from the conditions we have imposed on 4 and f,

that the behavior of F (z) in the neighborhood of an endpoint of L

II must be such that

(2.8) £z_.l (1-z)F0 (z) - 0

Zz- -l(1+Z)Fo(z) - 0

Let r be the boundary of a domain which contains L[-1,11. If z is

in the exterior of r then

I (o Z) 0

Since (2,8) holds, the path r can be collapsed into the path C,

composed of the upper and lower banks of L, without changing the

value of the Cauchy integral. At these banks, however, the limit

values F () vanish. We therefore conclude that F (z) vanishes
0 0

everywhere in the exterior of L(-1,1] and hence, if a solution of

(2.1) exists, the constants ko and kI must be such that the two-

valued function

"( (2.9) S(z) a 2 (lf+2%fl+ldT+ 2,(k +Zk +ll-z lX

(A) -Z~d
L

is analytic for z not on L[-1,l]. We will refer to this condition

as condition (A),
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If for a prescribed f(C) constants ko and k, exist such that

8(z) is analytic for z not on LC-1,1], then, as we can see by taking

the limit values of (2.9),

I.(2.10) + ±.ILI .i 4(C) + X S+C
L

(2.11) f r(.d.1 -i 4(C)+ -A S'(C)

and, as subtraction of (2.11) from (2.10) shows, the solution of

(2.1) is

(C) -r1q [s+(C)- s'(C)]

( 1 2 (1- 2 l)flr)dT 2].21 T+ 2ri f(M)+

2

+2?A(k 1 + Ck0) - k;

L 1 -
2

1~~~~ 2 (1- 2-f d 2Tri f (C) + A2'7

2X(k +Cko)- ko2

+0 0

For the case in which L[-1,1] coincides with the real axis we

find that if f(M) is real then the solution of

(2.13) -4()((uf. dt. VU , -
-i

is
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It is easy to verify that (2.12) satisfies (2.1) when Slz)

S~satisfies condition (A). If we write

1

(2.1.4) 4(C) (1- (S( )ftd + 2ri)+X2

i " r o TLS0 ,J

7w e h a v e 21

dI 12~ to - kvrjjd

141

L L

fiLL1.'r-: ¶1r•'S(T)dT

It is eayt eiyta 21) aife 21 hnS

Now if we detach C from L and expand C into r we have

f jL~jdT ~{1Iso(C) +2 0S (C)} +[() -27ri f(~

L

weand, since S11 -- 7 as r

4 ~-r 1{ f Oi + 2iri f (T)] [s(e" )- 2ui f (,r)]¶4f E,, ,, 1 S(°~-

L

Ther~efor~e

1. .



L4+ 1C(C)(+ fk f (C [SS(C) (s)+-] f()

II - fSC)

The condition that S(z) must be analytic in the complex plane

slit along L(-1,1], [the condition (A)], does not in general

determine the constants k and k1 numerically. This can be seen

by considering the equation

(2.15) A r) +4(R) 4(t)dt 0
-l

The function 8(z) for this equation is
1

2 0 1l 2 ko

s(Z) +2+°"z 2.

"X z 2 -_A z 22, A2

and this certainly satisfies condition (A) if we take ko - k 1 -0.

For these values we have

j(W2)2 0

namely the trivial solution of (2.15). On the other hand, S(C)

will satisfy (A) if



2 2_2 -A, A212

X z 2 Xk z +k. -2Mc -

h possesses a double zero, that is, if we take 2k 1 +A 0. With this

choice, ko is arbitrary, and

Az - ko
S(z) -

from which

T '- - 1. -

jj
and this is the general solution of

1 -l

Thus we can see that in order to fix k and k1 uniquely we may have

to impose side conditions in addition to condition (A).

Let us examine the possibility of having a solution 4 whose

endpoint behavior is such that

(B) C,3 (a-7)" 4() - 0

With this behavior the endpoint behavior of f(C) must be such that

(B1 ) £€•a (a-C)f(C) - 0

Under condition (B) the order of integration can be changed in

L L

and hence by integrating (2.1) we find
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L L L L

)f(Cd + f (X4 f(1) rc)Id~r f f (C)dC
L L L

(2.16) ko -f fr(?)d'r

L

Also, after multiplying (2.1) by C and integrating:

X fc4cd f ( C-fi +T)4S~d~dTf~f~d

L L L L

H
L )C[f 4(T1dTr + f (4(T) -f(T) ]d-r f fCd

(2.17) 2Ak 1 -2 rf(i)dr - k2

L

The substitution of these values fr ko and kI in (2.9) gives

(2.18) 8(Z) - [2 ff(r~)d- +X22

and a solution satisfying (B) will exist if f(C) satisfies (33) and

(2.18) satisfies (A). When this is the case the solution is

Iii
4(e)- ~ 2 ft~~d?+ 27ri f(C) +

1 [2rff (T)d-r 2if(C 2L -I "
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lI Instead of imposing the condition (B) at each endpoint of L

we may wish to impose it at only one endpoint, say the condition

1

Cc) -,07 cl'•-T) ) - 0

S The function f(C) would then have to be such that

SClol ZC-01 Cl-)f(C) - o.

Under condition (C) we find from (2.1) that

~fclc d ~f r fJ-!±+'L mf l+C)r(CkdC
L L L L

L L L L

(2.19) 2X(ko +k1 - ko 0o 2f (++T)f(lldr
L

The substitution of this value of k. in (2.9) gives

1 1
(2.20) d(z) - [ f- " (• +)f(T)d- 2Wk 0  2]2

L

and a solution satisfying (C) will exist if f(C) satisfies (C1 ) and

(2.20) satisfies (A). When this is the case the solution is

S[12k- + (1+)fr(T)d.r + 2iri fi) '+ A22 +

- 1 2 fi±I~f2d71 fCC) -2Xko

LI-j V 
0



3. Usstion 11

In this section, we show that

(31)'s~ [f $(TidT]2 (
(. L *r-"C-I

can be converted into a particular case of (2.1). We saw in

Section 2 that if C(r) belongs to the class V1 then we have the

Li identity

II(3.2) 20
1 L L

+ __

L___7_L

Hence if $(i) satisfies (3.1) then it must satisfy

2

(3 3) 1 f- iiS D2LQ fk ).T - -f(m) + c

or

(3.14) 2fi -CDA.PkA31~ -(l-m 2)f~a) + k
L L

where

ko f ý(-OdT .
L

Equation (3.14) is a singular integral equation of the first

kind which can be solved for

2(1-C21€ WC I•d

L

K h
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Ii The solution Is

Ii(3-5) 2 C)(~ Tf
L

1 ~ JT7 [k 2 (1-T2)rer]d

I where

tica 2f (1_C2)*(C) fkii2rdC

L Li - -•~~~f (1-,T*,/÷•°° W-) ff ,* f$(C*''•'d
L L L L

and therefore

(3.6) *k 2kokI

From (3.5) and (3.6) we find that if $(T) satisfies (3.1) it must

satisfy

(3.7) 4(c) f $ FCC)
L

where

(3.8) F(C) (1'r12)3/2f(T)dTr

L Ck {2 kok1

S+ +

Conversely, if 4(T) satisfies (3.7) it Maust satisfy (3.1).
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jj Equation (3-.7) is equation (2.1) with W - 0. we can apply

the theory of Section 2. It follows from the results of Section 2

that (3.1) possesses a solution provided

ii (Zr (1-r2 )P(T)di 1 oV
S(zL) - [7;E I '2

satisfies condition (A), i.e., SI(z) is analytic for z not on L.

Since

2 f (l_'-2 )P(T)d ,r 1. •f fjlzi 3.•--C -

z .- 7 f l
•11z2z/ •L(l'•23/ l)l-7-

L 
k2 ( L (T-z)72 

Lk

i_+ flz~ + 211. ,'_______

H,<,. f<o-. :,c <>o<+/ofcod(l-z )(l-z

1 - iT~Tk72 fiko2l ko)d ik(k4k)

is analytic for z in the exterior of L. If this condition can be

satisfied by e proper choice of ko and the solution of th.a) is



1

+ iko (2k, + kor)+ 0 1..i

S-f dlC23/2f,(cdC
- '' r f ('r) - L -,

iko (2k 1 + kor )

L For the case in which LJ-1,1] coincides with the real axis

we find that if f(C) is real then the real solution of

[~(- 1,0)o .',1• 24_t d. < -f11 I.•

is

. (3.11) 4e, - i? 1 (t213/2+f -tdt

-r-21 f(~ + -i~i7 C

Lk (k(2k1 +k°0

provided condition (A) is satisfied.

Ci Rquation III

The equation

(41.1) vr4'C1)+ f t(C)

lL
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can be vu'itten

(4.2) i 4(e) + r) . f(C).

We will solve this equation by using Carleman's method. Let us

introduce the function

(4-3) N(O ~f $(¶)d
L

a function of the complex variable z = x +iy, which is analytic for

z not on L, a simple smooth arc directed from z = -1 to z - 1. If

we let z approach a point C on L from the positive side of L, and

then the negative side of L; the limit values of F(z) are

(4.4) 
+ *f

L

ii(4.5) () -T c +fLd

L

Equation (4.2) says that these limit values must satisfy the

barrier equation

(4.6) p+(t) • '(•) - f(C)

where • is not an endpoint of L. The function F(z) which satisfies

this equation and has the properties implied by the representation

(4.3) provides the solution of the integral euation because the

subtraction of the PlemelJ formulas (4.4) and (4.5) gives

(4.7) 4(I) - , [+(:C) -r()]
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Ift we write

(j (4.8) F(z) - , O(z)

z + F -Z

I Ithen (4,6) implies that O(z) must satisfy

S(4.9) 0+(C) +o(•) -(C) f(C) + 2ri n

where n is an integer. As can be seen by using the PlemelJ

formulas, the function

(4.10) 0 (Z) 1 .- zf f f -~- + ri n. ~ L (FlTT+('r-z)+ i

is a particular solution of (4.9). Byf ' we mean here, and inL what follows, the branch of the two valued function (l-z2)1/2 which

is analytic for any finite z not on L, and such that

Z r- -i•

II The function 01 (z) is analytic for z not on L and since

10 £- 00 0 1(z) - const.

we have zl(z)

The general solution of (4.9) is

0(Z) a 01(Z) + [ p(z)

where p(z) must satisfy
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I((4.11) p+(C)- p() - 0

The function p(z) must be taken so that the properties of

S*G(Z)/z +J•7 match those of

L

This function is analytic for z not on L and it vanishes like ao/Z
0

as z -so o,, provided c0 =f4(¶d? ý 0. Furthermore, in accordance
L

with the assumptions about $(T) admitted in the introduction, the

behavior of 9(z) in the neighborhood of an endpoint a of L is such

that Z .(a-z)P(z) = 0; and the limit values F+(M), F(O) must

satisfy a uniform H8lder condition. These properties and the

condition (4.11) imply that p(z) must be analytic everywhere and it

must vanish at infinity, i.e., p(z) - 0.

We have now found that

(4&.12) 9(z) - t(z i~l) eXp { ri: f _____ ____

IL L(Jl-'r2 )(T-Z))
This gives

(4.13) a+C Lx f f (Tc)d

f(4&.14) Pl(C) . c+i F1--C7)'/F-TT exp f- XL. fj ~ -r

The solution of (4.1) is obtained by subtracting (4.14) from (4,13L

It ,i
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Iisi At00 f Aw ( t) d ii
L Fl-€ T )

Iir

It will be noticed that in the above analysis we have assumed

that F(z) = •( vanishes like co/z, co g O as z -. oo. If

L
this is not the case, that is, if for example

(4.16) co - -f 4(-)dT - 0L. L
L while

j (41.17) Cl - -f,4d(,d - 0

L

I then F(z) vanishes like cl/z 2, I1 a 0, as z -. ono and the solution

of (4.6) as we have given it has to be adjusted. However, it is

clear from the above analysis that if (4.16) and (4.17) prevail then

the adjustment is easily made by taking 1(z) -e + i

instead of (4.8), which leads to

(41.18) NOz -. 1z [-I~ ] ri-7 x f

L 7
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Ii 5. SSow Non-linear Problems in Potential Theory

The equations we have analyzed can be identified with certain

Ii problems In potential theory. For example, consider the problem of

Ji finding *(x,y) such that

! =(X,Y) + *Y€•,y) - o, y 0o

VY(x,O) - 0 , Ixi I 1

and subject to an additional condition on y 0, lxi ' 1 which is

specified below. Let us suppose that *y(X,O), lxi < 1, satisfies

the conditions imposed on 4(t) in Section 1, and that each of

*•x(,y} and ,y(x,y) vanishes as z - x +iy --- oo. The harmonic

function *y (x,y) can then be written

.(y i - I(t,O)dtli •(x,)= r (t~x), + y
y - y

I from which -I

*x y f (t-x) 
+ytO)dt

*XX,) 1 1 *( Y0d

T (tx) 2 + Y

U;-I +~y
i I~(X,O 0) f / #ylt,Oldt

X t -1

9.



Ii Now if we impose the additional condition

Xi IYXO +*(,)YXO - LfAi. ,X .x 1

Ii then 4(t) - V' (tpO), Itt 4 1, must satisfy

A4(x) +4(x) - fx ) x1.-l

If instead of I we impose

1. 2 (x'o) 2 o) - f(x) lxi

then f(t) - *y(t,O), must satisfy

I7 11Y4(X - fJ *t~t f(x) *x <x 1

! ji Finally, if the additional condition is

ji %•(xo)+,x(,O2 2 f(x)
yIII0 +* (x lxi ~1X

1.. then 4(t) - * (t,O), must satisfy
y

7r2 42(x)+ [ gt 1x - f(x) o <x

We proceed to show that problem III can be solved for domains

more general than the half plane. For the half plane problem we

can write

*(Xy) (Z)

and then
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-1 -1

lI which is the same as

(5-1)~ ~ e3')1 (t dt
sT -Z "

I The integral on the right hand side of (5.1) has been determined in

connection with the problem of solving the integral equation III,

in Section #, and we have

1.~[- '3T'z (z I(.2~,dj

1.(5.2) - ± Tz)'(z- I ex. f Fv I~~d

L where y is 1, or 2. The function #(x,y) can be obtained from (5.2)

by an integration.

L Let z - m(C) - m(t +il) be a function which maps the domain

D, with boundary C in the C-plane, conformally into the lower half

of the z-plane. Let the image of C1 a part of C, be the segment

y = 0, lx 1; and let the image of C2 , the remaining part of C,
be y - 0, lxi P 1. Under this mapping, I(x,y) is transformed into

*XY - -O T Iwo

a function harmonic in D.

Let s be the arc length measured along C from say the initial

point of Ol. If T- 9(s) +IT1(s) is a point on C, then the normal

I derivative of t(•,") at the boundary is
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S((, [ O(v) ]

SIf 0is on C2, then " is real and T'a(m(')] is real.

Hence for coon C2

The tangential derivative of V(,T) at the boundary is

S~~(5.4) cs.••no)q:

I. Prom (5.3) and (5.4) we see that for o0on C1

I - 1 drn(O)1
2 1 ,

1-

Therefore if we take
L2I

h(s) =Im()if TL

a- prescribed, then

ihamnc,,n) -R•. IWO m )

is harmonic in D, with normal derivative equal to zero along C2 ,

and with
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iR 7(0) +1( ,j) - h(s)

Ii prescribed along C1 . Thus the solution of problem III for the

domain D can be found by substituting z - m(C), t - m(Y) and

f(t) - f(m(criJ 7 2I h(s)l
Ii

jj in (5.2). The substitution gives

t~: Y1J1m()mm ()

I ~and then •( ,• can be obtained by integration.

The solution of problem III for particular domains and special

boundary values of the gradient is not new. For example, it is well

known that the method or conformal mapping can be used to find a

potential function •(•,i) such that

(5-5) r IM

n(0,1) "o -1,1 ; -o ' ' -0 ;

c -0

T This problem, or its equivalent, occurs in the hydrodynamical

theory of Jets. owever, the author has not seen the formula (5.5)

in the literature and it is probable that there are several problems

in field or flow theory for which it would be advantageous to use

(5.5) directly.

-W C
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II !! In order to see a simple application of (5.5) consider the

problem of finding 1( •P, ) such that

Ii

(5.6) R(,o) -0 -0 0 co

( +t(•,) - h(t) , -C t - oo

Ii The function

1 (5.7) z - x+iy - coth • (•+in) = coth7 - m(C)

maps the infinite strip into the lower half of the z-plane and the

segment 4 z 0 0; IS(z)I ( 1 is the image of C1: - i;

I -c • • • co. From (5.7) we rindI
m'(C) =- csch 2

S-l-m 2 ( oth2 . -1 csch2.

m m(*+i) - tanh W

IJ-m2 (T) - tah - eoho

dm(cr) d ir dA d7
= (tanh f *A To To- -

7 2r

--sech x7

cosh N o sinh

m~cij-m(~ - - cosh Ir (A-C

11I
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The substitution of these quantities in (5.5) gives

Ii
; -m o~~osh - Xl

i(5-8) d ?Em(s)] a FC1 1 C

2 aios2 ( in-•
j- +�[ +o(� •cosh'& A

eocoshmes
which if we use

i ~ ~' e,[ cosh 1X os dX t-

V cosh-C)

-OD:

=A2 + 2 La41+cosh 7rC +2iriil

becomes

2 equhed 2 stCy.)h
(5.10) 3 (.C ) - 2in2 7 [cojh *f C+i11

(exp If cosh (,-C)

I.

If we choose 7 2 so as to avoid a singularity at C-0 we finally

have

00cohI

-OD 7h

which determines the derivatives of k(,~* That is,, if

is required to satisfy (5.6) then

14'(C -r co h v , C
-00 s
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II 6. Some Non-linear Systems

In a recent paper, A. Beurling (5] proved that if D is a

region in Euclidean n-space then the non-linear system

+i 4(x)fk(t,x)#(t)dt - f(x)

(i 6.1) D

*(x)f k(x,t)l(t)dt - g(x)

D

possesses a unique solution when the kernel k(t,x) and the

prescribed functions f(x), g(x) are suitably restricted. Since

Beurling's analysis does not cover the following singular one-

dimensional case

!. -1
(6.2) -- l x '

I ~*(x) f V - g(x)

Sand since this system is related to certain problems in potential

theory; it is of some interest to see that (6.2) can be reduced to

a linear system by using the method of Section 2.

We suppose that each of the unknown functions belongs to

the class NJ, defined in the introduction, and we suppose that

each of the prescribed functions f(x), g(x) belongs to the class

2" Then, by using the Hardy-Poincar4-Bertrand formula as shown

in Section 2 it is easy to verify that



31

(6-3) -J4E-'[)f±.+#(X) fY2 t 5obo

-21 -1

where

bo - l(t)dt

if (6.2) possesses a solution, then (6.2) and (6.3) imply
-1..

(6.4 1x2)fx+ ~~d

+0 f V'(tdd

-11

f (41-2) + (Wx)[t(x)x 2(x)]d x a b
14 -1

1-t1

w6 ere T 2 2 (M 2 ~ + k S . . 2) [ f ( lx 2) + (x) J d)Jx _ a bb

- x~~f - 4.Ž 0 0
I .~ -
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I BcXluation (6.6) filxes the product •(M)(M, We find

(6.7) 4(•) ,() - k(t) - - ) P21(4) + 4w f( )g( )(1 '•j)2

2w2 ( 1.4)

With this product known the system (6.2) can be written

Ii f ---x t im
(6.8)

-1

The last equations can now be solved by Carleman's method [4].

I Notice that if each of f(x) and g(x) is integrable and we

require each of the unknown functions to satisfy the condition (B)

of Section 2 then

/ (x)dz - 4(x) f 1~~tx4xddt X -f (t) f X ~t
-l -1 -1 -1 -1

f g(t)dtI -1

or

(6.9) J If(x) +g(x)]dx o0

I Also, -1

J xf(x)dx * J V(t)J (x-t±) $(x)dxdt
-1 -l -t

, -1 -l -1 -1
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I dtiih determines acbh, that is,

1 -ao bo-J x(f(x)+ g(x)]dx
[ -1

Hence for solutions which satisfy (B), F(e)/(1-_ ) becomesI

If(x !.Lx) f.LxJ Ef (x)+g(x)]dx
14- -1

and since the second term on the right is zero by (6.9) we have

f-I 
(x)-dx

We remark in passing that the system

*1(t)dt4 W1  t+x f fl(x)

*1 (x) t W"(x)
-l

can be reduced to (6.2) by using the substitutions

41(t)- -t) , f 1 (x) = f(-x)

*l(t) * *(t) , g1 (x) - -g(x)

The systems noted above are not, of course, the only non-

I linear systems that can be solved by using the technique of

Section 2. The Hardy-Poincare'-Bertrand formula can be used to

linearize a number of other systems in which the non-linearity is

due to the presence of a product in which an unknown function is



I[ multiplied by an unknown Hilbert transform or an unknown StIeltjes

transform. As two additional examples we cite the systems

I (X)f t, - rx)fW+ A1 4(x)

Ii
*(x) J pt -, g(x) + A 2*(X)

Ii -1o

and

1. 0 0

+(x) f * (x) / Y~~ -_ 2(x
0 0

The last system plays an important role in the theory of radiative

transfer.

tL
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